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Subdiffusion is an important physical phenomenon observed in many systems. However, numerical tech-
niques to study it, especially when coupled to reactions, are lacking. In this paper, we develop an efficient
Monte Carlo algorithm based on the Gillespie algorithm and the continuous-time random walk to simulate
reaction-subdiffusion systems. Using this algorithm, we investigate Turing pattern formation in the Schnaken-
berg model with subdiffusion. First, we show that, as the system becomes more subdiffusive, the homogeneous
state becomes more difficult to destablize and Turing patterns form less easily. Second, we show that, as the
number of particles in the system decreases, the magnitude of fluctuations increases and again the Turing
patterns form less easily. Third, we show that, as the system becomes more subdiffusive, the ratio between the
two diffusive constants must be higher in order to observe Turing patterns. Finally, we also carry out linear
stability analysis to validate the results obtained from our algorithm.
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I. INTRODUCTION

Since Turing discovered that the homogeneous steady
state of a chemical reaction can be destabilized by diffusion
�1�, many studies have been carried out on reaction-diffusion
models which exhibit patterns. Such models have applica-
tions in a number of diverse fields, such as biology �2,3�,
physics �4,5�, and optics �6�.

However, experiments have shown that, in many cases,
the diffusion is non-Fickian and the standard reaction-
diffusion model cannot be used. What is observed is that the
mean square displacement of the particles �x2� is propor-
tional to time t�, where 0���1 is the diffusion exponent.
This is known as subdiffusion. For example, using fluores-
cence correlation spectroscopy, Weiss et al. �7� showed that
the motion of macromolecules in the cytoplasm is subdiffu-
sive, with ��0.526. Other examples include charge carrier
transport in amorphous semiconductors �8�, solute transport
in porous systems �9–12�, etc. Also, space-fractional
reaction-diffusion equations have been considered in Ref.
�13� with applications to population biology �14�. Therefore,
to study pattern formation in these systems, it is important to
consider reaction-subdiffusion systems.

The canonical model for explaining subdiffusion is the
continuous-time random walk �CTRW� model �15–17�. In
this model, every particle makes a jump of distance x after a
waiting time of � according to a probability distribution
W�x ,��. The latter is often decoupled as ��x�f��� with ��x�
being a normal distribution and f��� being a heavy-tailed

distribution such that its Laplace tranform f̂�s��1− ��s��. It
can then be shown that the long-time limit of the CTRW is
governed by �18�

�N

�t
= K	0Dt

1−��2N�x,t�
�x2 
 , �1�

where N is the particle number density, K is the effective
diffusion constant, and 0Dt

1−� is the Riemann-Liouville op-
erator �19,20�.

As a side note, Eq. �1� is also equivalent to the more
familiar time-fractional form,

��N

�t� = K
�2N

�x2 �2�

where the operator on the left-hand side of the equation is the
Caputo fractional derivative. This form more closely re-
sembles the usual diffusion equation. The use of the Caputo
fractional derivative allows the initial condition at t=0 to be
handled in a more natural way, similar to integer order de-
rivatives in time. The reader may refer to Ref. �21� on the
role of such fractional kinetic equations in modeling Hamil-
tonian chaos.

When the particles are also reacting with one another
�22,23�, it is not clear how the CTRW should be extended.
Many proceed directly to writing down differential equations
for reaction-subdiffusion systems. For example, for a system
with two reacting species, it is tempting to write, by compar-
ing with standard reaction-diffusion equations,

�Ni

�t
= Ki	0Dt

1−�i
�2Ni�x,t�

�x2 
 + Fi�N1,N2� , �3�

for i=1,2. Here, N1 and N2 are particle number densities for
the two species, F1 and F2 are functions specifying the reac-
tion kinetics, K1 and K2 are the diffusion constants, and �1
and �2 are the diffusion exponents.

Unfortunately, these equations do not work for even the
simplest system: X1→X2 �24,25�. The contributions of sub-
diffusion and reactions simply cannot be separated as in Eq.
�3�. The correct equations governing reaction-subdiffusion
are derived in Ref. �26�, but they seem too difficult to be
evaluated numerically.
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In Ref. �27�, Weiss designed a hybrid algorithm to simu-
late reaction-subdiffusion and to study pattern formation for
the Schnakenberg model �28�. His method divides space into
bins, and simultaneously performs the CTRW and solves the
differential equations numerically for each bin. This method
is then employed to study Turing pattern formation in sys-
tems with noise induced by low particle numbers, an impor-
tant problem because biological systems typically involve
only low number of particles. However, by evolving the par-
ticle counts in each bin numerically, the above algorithm
ignores the effect of noise in individual bins, which has even
fewer particles.

Motivated by the lack of a stochastic algorithm to simu-
late reaction-subdiffusion systems and to study the effects of
noise on such systems, we combine the Gillespie algorithm
�29� and the CTRW, and arrive at an algorithm that can simu-
late reaction-subdiffusion systems. In Sec. III, we apply our
algorithm to study the Schnakenberg model with subdiffu-
sion. In particular, we are interested in Turing pattern forma-
tion in this system, and investigate how it could occur as
parameters such as the diffusion exponent, total number of
particles in the system, and the ratio of the diffusion con-
stants of the reacting species are varied. Finally, we perform
linear stability analysis for this model to validate our algo-
rithm. Our analysis will be based on the mean field solution
established in Ref. �26� and is similar to Ref. �30�.

II. MATHEMATICAL MODEL AND A MONTE CARLO
ALGORITHM

A. The Gillespie algorithm

We will begin with a review of the Gillespie algorithm
�29�. The setup is as follows. Let A be a set of reactions,
namely, A= �R1 ,R2 , . . . � where each Ri is a reaction. Suppose
these reactions involve S different species of reactants
X1 , . . . ,XS. Say the rate constant of Ri is ci and the number of
Xi particles present is Ni. Given a state �N1 , . . . ,NS� at time T,
we can define the joint probability distribution PA�t , i� such
that

PA�t,i�dt = Pr�reaction Ri takes place next among reactions

in A in the time interval �T + t,T + t + dt�� . �4�

If PA is known, we can compute the marginal distribution
pA�i�=
0

�PA�t , i�dt, and use it to identify the next reaction to
happen. If some reaction Ra is selected, we can then sample
t from the conditional distribution PA�t �a�= PA�t ,a� / pA�a�.
This basic framework of the Gillespie algorithm is shown in
Table I.

It remains to determine PA in terms of the rate constants ci
and the state �N1 , . . . ,NS�, so that the algorithm in Table I
evolves the system according to the rate equations. For this
purpose, Gillespie introduced the quantity hi as the number
of distinct Ri reacting combinations given the state
�N1 , . . . ,NS�. For example, if R1 is “2X1+3X2→X3,” then
h1= �

N1

2 ��
N2

3 �. Further, assuming that cidt is the average prob-
ability that a reacting combination of Ri reacts in a time
interval dt, Gillespie showed that

PA�t,i� = �ie
−�0t �5�

where �i=hici is known as the propensity of reaction Ri, and
�0=�Ri�A�i. From Eq. �5�, we obtain pA�i�=�i /�0 and
PA�t �a�=�0e−�0t, and translate Table I into the Gillespie al-
gorithm in Table II.

To incorporate diffusion, the usual practice is to divide the
whole space into bins or reaction chambers, and add reac-
tions to allow particles to jump between adjacent bins �31�.
For convenience, we call these additional reactions “diffu-
sive reactions” and the reactions within each bin “nondiffu-
sive reactions.” Performing the Gillespie algorithm on such
an expanded system of reactions has worked well for many
reaction-diffusion models �32–35�.

However, when particles undergo subdiffusion instead, it
is not clear what the rate constants of diffusive reactions
should be. They cannot be fixed with respect to time; other-
wise standard diffusion would be reproduced. Yet, deciding
how these rate constants should vary with time is not trivial.
One underlying problem is that if we assume the subdiffu-
sion to be accounted by the CTRW, then every subdiffusing
particle has a nonexponential waiting time distribution �15�
which is not memoryless. Each particle thus possesses
memory and behaves uniquely, but the Gillespie algorithm
does not distinguish between particles of the same species in
the same bin. Another way to see this is to examine Eq. �1�.
The equation contains the Riemann-Liouville operator
�19,20�, and implies that the evolution of the system depends

TABLE I. The basic framework of the Gillespie algorithm.

function GillespieBasicFramework �A�
1. Let T=0.

2. While T�Tmax,

�a� Compute pA�i�=
0
�PA�t , i�dt for each Ri in A.

�b� Pick reaction Ra to happen next with probability pA�a�.
�c� Carry out reaction Ra and update the Ni’s.

�d� Sample t from the conditional distribution
PA�t �a�= PA�t ,a� / pA�a�.

�e� Increment T by t.

TABLE II. The Gillespie algorithm.

function Gillespie �A�
1. Let T=0.

2. While T�Tmax,

�a� Compute �i=hici for each Ri in A.

�b� Let �0=�Ri�A�i.

�c� Pick reaction Ra to happen next with probability
�a /�0.

�d� Carry out reaction Ra and update the Ni’s and hi’s.

�e� Sample t from the distribution �0e−�0t. �Specifically,
lett=�0

−1 log�1 /r�, where r is sampled uniformly from
�0,1�.�

�f� Increment T by t.
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on its previous states. However, the Gillespie algorithm does
not have any mechanism to remember the system’s previous
states. Our aim is therefore to modify the Gillespie algorithm
so that it can support such a system with reasonable extra
computational cost.

B. Extending Gillespie algorithm to continuous-time
random walk

Before modifying the Gillespie algorithm, we present the
basic mathematical model that it rests on. In this model, we
assign every reacting combination a random waiting time.
Let A be a set of reactions and A� be its reacting combina-
tions. Denote a reacting combination of reaction Ri as Ri,j
where j=1, . . . ,hi. Let �i,j be its waiting time, sampled from
some probability distribution f i���. If all the reactions are
“diffusive reactions,” then this model is essentially the
CTRW. The most direct method to simulate such a model is
to store the absolute time a reacting combination Ri,j is going
to happen as Ti,j, and repeatedly find the minimum Ti,j
among all the reacting combinations. This is illustrated in
Table III.

For selecting the reacting combination with the minimum
�i,j, a heap data structure can be used �36�. However, due to
combinatorial explosion, the algorithm in Table III remains
infeasible. Here is an alternative approach. First, determine
the distribution PA�t , i , j� defined such that

PA�t,i, j�dt = Pr�reacting combination Ri,j takes place next

among reacting combinations in A� in the time

interval �T + t,T + t + dt�� . �6�

This resembles Eq. �4�. Second, define pA�i , j�
=
0

�PA�t , i , j�dt as the probability that reacting combination
Ri,j happens next. Third, modify the basic framework of the
Gillespie algorithm in Table I such that, instead of choosing
the next reaction Ra, choose the next reacting combination
Ra,b with probability pA�a ,b�. This is shown in Table IV. The
question is, what is PA�t , i , j� given the waiting time distri-
butions f i���?

At any point in time, we let ti,j be the time that Ri,j has
already waited. Note that 0� ti,j ��i,j. For some Ra,b to take
place next after a further wait of t, i.e. �a,b is in the time
interval �ta,b+ t , ta,b+ t+dt�, it must be that all other reacting

combinations Ri,j has �i,j 	 ti,j + t. By conditional probability,
we can write

PA�t,a,b�dt = 	 �
Ri,j�A�

�i,j���a,b�

Pr��i,j 	 ti,j + t��i,j�ti,j�


 Pr�ta,b + t � �a,b � ta,b + t + dt��a,b�ta,b� .

�7�

Define the upper tail probability of f i��� as gi���
=
��=�

� f i����d��, and rewrite Eq. �7� as

PA�t,a,b�dt = � �
Ri,j�A�

�i,j���a,b�

gi�ti,j + t�
gi�ti,j� �	 fa�ta,b + t�dt

ga�ta,b�

 . �8�

Let ei���= f i��� /gi��� and simplify Eq. �9� into

PA�t,a,b�dt = 	 �
Ri,j�A�

gi�ti,j + t�
gi�ti,j� 
ea�ta,b + t� . �9�

If the f i of all reactions in A are exponential distributions,
i.e. of the form cie

−ci�, then the memoryless property leads to
very simple gi’s and ei’s: gi���=e−ci� and ei���=ci. Plugging
these into Eq. �9�, we obtain

PA�t,a,b� = 	 �
Ri,j�A�

e−cit
ca = cae−�0t, �10�

where �0=�i=1
M �i and �i=hici are the propensities seen ear-

lier in Sec. II A. Notice that pA�a ,b�=
0
�PA�t ,a ,b�dt

=ca /�0. This is independent of b. Thus, for this special case,
there is no need to distinguish between reacting combina-
tions of the same reaction type and the method of selecting
the next reacting combination in Table IV can be reduced to
selecting the next reaction Ra with probability pA�a�
=�bpA�a ,b�=haca /�0=�a /�0. We arrive again at the
Gillespie algorithm in Table II.

However, for reaction-subdiffusion systems, the f i’s for
diffusive reactions cannot be exponential distributions. Oth-
erwise, we will obtain standard diffusion according to
CTRW theory �15�. For this more general case, the algorithm
in Table IV is not feasible because integrating Eq. �9� to

TABLE III. A direct method for simulating the basic model in
Sec. II B. Note that it resembles the continuous-time random walk.

function GillespieCTRW �A ,A��
1. Let T=0.

2. Sample �i,j from f i��� for every Ri,j in A�. Store Ti,j =0+�i,j.

3. While T�Tmax,

�a� Select among A� the reacting combination Ra,b with the
minimum Ta,b.

�b� Set T to Ta,b.

�c� Execute the reaction of combination Ra,b. If a new
reacting combination
Ri,j is born, sample �i,j and store Ti,j as T+�i,j.

TABLE IV. Generalization of the basic framework of Gillespie
algorithm in Table I.

function GillespieExtendedFramework �A ,A��
1. Let T=0.

2. While T�Tmax,

�a� Compute pA�i , j�=
0
�PA�t , i , j�dt for each Ri,j in A�.

�b� Pick reacting combination Ra,b to happen next with
probability pA�a ,b�.

�c� Execute the reaction of combination Ra,b.

�d� Sample t from the conditional distribution
PA�t �a ,b�= PA�t ,a ,b� / pA�a ,b�.

�e� Increment T by t.
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obtain pA�i , j� for every reacting combination seems compu-
tationally intractable.

C. Our Monte Carlo algorithm

So far, we have two candidates for simulating the basic
mathematical model in Sec. II B. They are shown in Table III
and Fig. 4. Unfortunately, neither is feasible due to combi-
natorial explosion. Our approach is to divide the set of reac-
tions A into two sets A1 and A2, where A1 is the set of reac-
tions with f i’s being exponential distributions, and A2=A
−A1. For A1, which corresponds to nondiffusive reactions,
we will apply the algorithm in Table IV. Since the f i’s for
these reactions are exponential distributions, there is no need
to distinguish between reacting combinations of the same
reaction, and the algorithm in Table IV reduces to the dra-
matically faster Gillespie algorithm in Table II. For A2,
which corresponds to diffusive reactions, we will apply the
algorithm in Table III. Since each of these diffusive reactions
involves only one species, the number of reacting combina-
tions for A2 increases only linearly with the total number of
particles, and can be handled well by the algorithm in Table
III. Each algorithm will report their earliest reacting combi-
nation and we will pick the earlier one. This approach is
outlined in Table V.

The correctness of this approach can be proven by con-
sidering a more general set-up. Suppose the set of reactions
A is partitioned into L subsets A1 , . . . ,AL. Let Ak� denote the
reacting combinations of reactions in subset Ak. Suppose for
each Ak, there is some algorithm Ak which can single out the
earliest reacting combination in Ak�. To be precise, we mean
that Ak selects reacting combination Ri,j in Ai� to happen next
at time interval �T+ t ,T+ t+dt� with probability PAk

�t , i , j�dt,
as in Eq. �9�. Say each Ak reports an absolute time Tk for
their “earliest” reacting combination, and we pick the react-
ing combination with the smallest Tk.

Obviously, for some Ra,b in Ac to be selected and ex-
ecuted, it must be that Tk	Tc for all k�c. Let tc=Tc−T. By
the assumption about Ak in the previous paragraph, this
probability is �Ri,j�Ak


tc
�PAk

�t , i , j�dt.
Substitute in Eq. �8�, bring the summation into the inte-

grand and apply the product rule to obtain

�
tc

� d

dt	 �
Ri,j�Ak

gi�ti,j + t�
gi�ti,j�


 = �
Ri,j�Ak

gi�ti,j + tc�
gi�ti,j�

. �11�

This approach therefore chooses the combination Ra,b from
subset Ac to react in time interval �T+ tc ,T+ tc+dt� with
probability �PAc

�tc ,a ,b�dt� �k�c�Ri,j�Ak
gi�ti,j + tc� /gi�ti,j�.

Refer to Eq. �9� and recognize that the above is exactly
PA�tc ,a ,b�. Hence, the algorithm in Table V, which com-
bines two correct algorithms for subsets A1, A2, works. Note
that for subset A1, we can determine T1 before deciding
which reaction in A1 is the earliest. This saves time whenever
T1	T2.

III. SIMULATION OF THE SCHNAKENBERG MODEL
AND RESULTS

A. Simulation set-up

In this section, we apply our algorithm to simulate the
Schnakenberg model with subdiffusion. We want to investi-
gate the conditions for Turing pattern formation when the
particles undergo subdiffusion instead of normal diffusion.
The Schnakenberg model is chosen as a simple and proto-
typical model for Turing pattern formation. It comprises only
four reactions: A�U, B→V, and 2U+V→3U. Assume
space to be one dimensional, x� �0,1� with periodic bound-
aries. Let u�x� and v�x� be the number density of particles of
U and V respectively, at point x. In the absence of diffusion,
the law of mass action dictates that

�u

�t
= aM +

vu2

M2 − u

�v
�t

= bM −
vu2

M2 , �12�

where a, b, and M are positive constants, i.e., we have as-
sumed that the densities of species A and B are very much
higher than those of species U and V and can therefore be
treated as constants. In our simulations, we fix a=0.1 and
b=0.9. Observe that, at steady state, we expect u=M and v
=bM. Since the space has unit length, we expect the system
to have a total of �b+1�M particles. The parameter M there-
fore specifies the number of particles in our simulations. We
are also interested to study Turing pattern formation as a
function of the number of particles in the system, i.e., to
study the effects of fluctuations induced by small numbers of
particles.

Next, subdivide the space evenly into N bins. Let xi be the
center of bin i and ui, vi be the number of particles of U, V in
bin i, respectively. Approximately, ui=u�xi� /N and vi
=v�xi� /N. Substitute these into Eq. �12� to obtain

TABLE V. Our algorithm for simulating the mathematical
model in Sec. II B. Note that A1 is the set of reacting combinations
with f i’s being exponential distributions, and represents non-
diffusive reactions, while A2 is A1’s complement and represents
diffusive reactions.

function GillespieReactionSubdiffusion �A1 ,A2�
1. Let T=0.

2. While T�Tmax,

�a� For each Ri in A1, compute �i=hici.

�b� Let �0=�Ri�A1
�i.

�c� Sample the time delay t1 from the distribution �0e−�0t.

�d� Let T1=T+ t1.

�e� Let Tc,d be the smallest Ti,j among reacting
combinations of reactions in

A2. Let T2=Tc,d.

�f� Set T to min�T1 ,T2�.
�g� If T1�T2, pick Ra from A1 with probability �a /�0 and

execute it.

�h� Otherwise, execute the reaction of combination Rc,d.
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�ui

�t
= a	M

N

 + viui

2	 N

M

2

− ui,

�vi

�t
= b	M

N

 − viui

2	 N

M

2

. �13�

From the above equations, we can read off the propensities
to use for nondiffusive reactions within each bin. For ex-
ample, the propensity for A→U is a�M /N� while the pro-
pensity for 2U+V→3U is viui�ui−1��N /M�2.

Now, to incorporate subdiffusion, we let ui→ui�1 �and
similarly for the vi’s� and let the f i’s of these diffusive reac-
tions be the Pareto distribution, which is heavy tailed. This
distribution has two parameters �, �: f�,����=����−�−1, sup-

ported on �� ,��. Its Laplace transform is f̂�,��s��1− ��s��

where �=��−�
�−���1/� and 
 is the Gamma function.
By CTRW theory, if particles move by distance x after

waiting for time � with probability ��x�f���, where the Fou-
rier transform of ��x� is �̂�k��1−�k2 and the Laplace trans-

form of f��� is f̂�s��1− ��s��, then the particles subdiffuse
with diffusion exponent � and diffusion constant K=� /��

�15�. In our case, since particles move left or right with equal
probability, ��x�= 1

2 ���x−1 /N�+��x+1 /N�� where � is the
Dirac delta function, and �=1 / �2N2�.

We focus on the case where the two species of particles
have the same diffusion exponents but different diffusion
constants. Thus, for the two Pareto waiting time distribu-
tions, we use the same � but different �. Specifically, when
given � and Ki, let

�i = 	 �

− Ki�
�− ��

1/�

. �14�

In addition, we fix K1 at 10−4 and vary only the ratio D
=K2 /K1.

To summarize, there are three parameters that we vary in
our study of the Schnakenberg model, namely the number of
particles in the system M which characterizes the extent of
“noisiness” in the system, the diffusion exponent � which
characterizes the extent of subdiffusion, and the ratio of dif-
fusion constants D. We use the algorithm developed in Sec.
II to study the formation of Turing patterns in the Schnaken-
berg model with subdiffusion as these parameters are varied.

B. Measuring the strength of patterns

Next, we define a metric to characterize the strength of
patterns. Let ui�t�, vi�t� be the number of particles of U, V in
bin i at time t respectively, and u�t� denote the spatial state
�ui�t� : i=1, . . . ,N�. The metric we use is the short-range cor-
relation

��t� =

�
i=1

N

�ui�t� − ���ui+1�t� − ��

�
i=1

N

�ui�t� − ��2

�15�

where � is the mean of u�t�. There is no need to consider
v�t�= �vi�t� : i=1, . . . ,N� because it largely mirrors u�t�. The

metric differs from what is found in Ref. �27� and has the
advantage of being normalized. In our simulations, we run
from time t=0 to t=300, and find that ��t� reaches steady
state quickly. This is shown in Fig. 1. Hence, we take the
average of ��t� over t=250 to t=300 and over 20 runs with
randomly chosen initial conditions. This quantity, denoted as
�*, is the actual metric used.

In Sec. III D we will explain that the threshold value of �*

for which Turing patterns appear will be �*�0.82, i.e., we
consider Turing patterns to have formed when �*�0.82.

C. Turing pattern formation

First, we vary the diffusion exponent � and investigate
whether Turing pattern formation occurs when normal diffu-
sion is replaced with subdiffusion. Recall that diffusion de-
stabilizes the homogeneous state and leads to pattern forma-
tion. Therefore, when � decreases for both reactants, we
expect the diffusion to become weaker and the patterns to
diminish and disappear eventually. This is indeed what we
found, as shown in Fig. 2. We see that when �→1 �i.e.,
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FIG. 1. �a�–�c� Evolution of number of U particles over time.
�d�–�f� Variation of the number of U particles over space, averaged
over t=250–300. �g� ��t� �see Eq. �15� on this metric on the
strength of patterns� versus time t, for one randomly chosen initial
condition. From left to right, the subdiffusion exponent
�=0.95,0.80, 0.72; other parameters are the ratio between diffusion
constants D=100, and the total number of U particles at steady state
M =6428.
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approaching normal diffusion�, the values of D=100, 200,
300, 400 and M =5000 are such that �*→1, i.e., that patterns
do occur. But when � is decreased, we see that �* decreases
as well. As will be explained in the next section, a value of
�*�0.82 denotes pattern formation. Thus, we see that pat-
tern formation occurs in the Schnakenberg model when �
�0.6.

Second, we vary the total number of particles M and in-
vestigate how Turing pattern formation varies. In a system of
M particles, we expect that variables that depend on M will
have their variance scale like �M−1. Thus, we expect the
parameter M−0.5 to control the magnitude of fluctuations in
the system, or equivalently, the extent of “noisiness” in the
system. In Fig. 3, we see that �* decreases approximately
linearly with M−0.5, for several values of � and fixing D
=100. This result is again intuitive: as noise in the system
increases, patterns become weaker and eventually disappear.

These two results can be summarized in a parameter
space plot of �* as a function of both � and M−0.5, as is
shown in Fig. 4. In addition, we can also compute the width
in � over which the transition from a homogeneous state to a
pattern takes place. This width is denoted in the figure by the
dotted lines drawn where �*=0.77,0.82,0.87. Let the width

w be the horizontal distance between the leftmost and right-
most lines. In the bottom diagram of Fig. 4, we see that w
increases linearly with M−0.5, suggesting that noise tends to
smear out the transition to pattern formation that, by extrapo-
lation, is sharp in the deterministic �no noise, M−0.5=0� re-
gime.

Third, we vary the ratio of diffusion constants D=K2 /K1
and see how Turing pattern formation varies. It has been
established that for normal reaction-diffusion systems, Tur-
ing patterns form only when D�1. For example, when a
=0.1 and b=0.9 as we use throughout here, we expect Turing
patterns to occur when D�8.5 �27�. In Fig. 5, we see that �*

decreases as D decreases for several different values of �. In
fact, the smaller � is, the larger D needs to be in order for
Turing patterns to occur. Figure 6 illustrates how �* varies
with both D and �.

D. Linear stability analysis

We will now perform linear stability analysis to verify
that the aforementioned results obtained from our simula-
tions are correct. First, we will describe the procedure of the
stability analysis for an arbitrary reaction-subdiffusion sys-
tem, with two species of reactants having the same diffusion
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FIG. 2. �a�–�c�Evolution of number of U particles over time.
�d�–�f� Variation of number of U particles over space, averaged over
t=250–300. �g� �*, the strength of patterns, versus time �, with
various D’s, the ratio between diffusion constants. From left to
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exponent. Then, we will apply this procedure to the
Schnakenberg model to obtain �L, the threshold value of �
above which Turing patterns are expected to form. Finally,
we will compare �L with the results of the simulations.

Denote N�x , t�= �N1�x , t� ,N2�x , t�� as the number of par-
ticles of two species of reactants. The rate equations can be
put as dN /dt=F�N� where F is some vector-valued function
of N. For our Schnakenberg model,

F�N� = 	aM + N1
2N2/M2 − N1

bM − N1
2N2/M2 
 . �16�

Let N0 be the stationary state. Consider perturbing it by some
small n. Observe that

dn

dt
= An where Ai,j =

�Fi

�Nj
. �17�

Assume that A can be diagonalized and expressed as A
=V�V−1 for some diagonal matrix �. Define

B�t� = exp�At� = V exp��t�V−1. �18�

The solution for Eq. �17� is

n�t� = B�t − t��n�t�� . �19�

This describes how n changes due to reactions that hap-
pen between t� and t. Now, turn off reactions and consider
just a CTRW. Define ni�x , t� as the number of species i par-
ticles that just appear at x at time t. Without reactions, we see
that

ni�x,t� = �
x�
�

t�=0

t

��x − x��f i�t − t��ni�x�,t�� . �20�

Turn on reactions. Since n is a small perturbation to N0,
we can modify ni�x� , t�� in Eq. �20� according to �19� and
obtain

ni�x,t� = �
x�
�

t�=0

t

��x − x��f i�t − t���
j=1

n

B�t − t��i,jnj�x�,t�� .

�21�

Define n0�x� as n�x ,0� and f�t� as diag(f1�t� , f2�t�). Rewrite
Eq. �21� in vector form,
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n�x,t� = n0�x���t� + �
x�
�

t�=0

t

��x − x��f�t − t��


B�t − t��n�x�,t�� . �22�

Apply the Fourier transform to obtain

n̂�q,t� = n̂0�q���t� + �̂�q��
t�=0

t

f�t − t��B�t − t��n̂�q,t�� .

�23�

Apply the Laplace transform to obtain

n̂̂�q,s� = n̂0�q� + �̂�q�C�s�n̂̂�q,s� , �24�

where

C�s� = L„f�t�B�t�…�s� . �25�

Rearrange Eq. �24� to get

�I − �̂�q�C�s��n̂̂�q,s� = n̂0�q� . �26�

When n0=0, we expect nontrivial solutions to Eq. �24�.
Hence,

det�I − �̂�q�C�s�� = 0. �27�

It remains to determine C�s�. Note that V is independent
of t. Let �=diag��1 ,�2�. By Eqs. �25� and �18�,

Ci,j�s� = L	�
k

f i�t�Vi,k exp��kt�Vk,j
−1
 . �28�

Since f̂ i�s�=1− ��is��, we have

Ci,j�s� = �
k

Vi,kVk,j
−1�1 − �i

��s − �k��� . �29�

Let �=diag��1 ,�2�. Rewrite Eq. �29� in matrix form,

C = I − ��V�sI − ���V−1. �30�

Substitute the above into Eq. �27� to obtain an expression of
the form q4+J1�s�q2+J2�s�=0. Set s=0 since we are inter-
ested in the asymptotic behavior. Let Q=q2. This gives us a
polynomial

��Q� = Q2 + J1�0�Q + J2�0� . �31�

Patterns can form only when there are real positive solu-
tions for ��Q�. Now apply this to the Schnakenberg model.
From Eq. �16�, it can be shown that

N0 = ��a + b�M = M,b�a + b�−2M = bM� ,

A = 	− 1 + 2b 1

− 2b − 1

 ,

V = 	2b − 2�b2 − 2b 2b + 2�b2 − 2b

− 4b − 4b

 ,

�1 = b − 1 − �b2 − 2b ,

�2 = b − 1 + �b2 − 2b . �32�
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��Q� is now completely determined. For illustration, we
plot its solutions with D=100, versus � in Fig. 7. When �
�0.68, ��Q� begins having positive real roots. Therefore, �L,
the value of � below which patterns cannot form, is approxi-
mately 0.68. It turns out that �L is always a root of the
discriminant J1�0�2−4J2�0� and can be obtained numerically.

Consider a plot of �* versus � obtained from the simula-
tions, for example Fig. 2. Define the function �*�m� to be the
� at which �*=0.85, when M =m. We shall compare �*�m�
for various values of m, with �L. Figure 8 shows that for
large D, �L and �* coincide, suggesting that there is agree-
ment between linear stability analysis and our simulations.
�As to why there are deviations at small D, we postulate that
finite-size effects are the cause: as M gets smaller, the mean
field approximation made by the linear stability analysis be-
comes less reasonable, and �L and �* will begin to disagree.�

IV. CONCLUSION

We have designed a Monte Carlo algorithm for simulating
reaction-subdiffusion systems, and used it to study the

Schnakenberg model. The two reacting species are assumed
to have the same diffusion exponents, and we find that when
the diffusion exponent �, the total number of particles con-
trolled by M, and the ratio between the diffusion constants D
are large enough, patterns can be formed. We have also sys-
tematically worked out the parameter space in which patterns
may form. A linear stability analysis is performed to obtain
critical values of �, which we call �L, below which there are
no patterns, and it agrees with our simulation results.

In future, our algorithm can be used to study other sys-
tems as well, for example the Brusselator or the Gierer-
Meinhardt models, or even growth and dispersal of biologi-
cal species �14�. Superdiffusion can also be implemented by
allowing particles to jump more than one bin away �13�.
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